
 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

561

January
2014

“transForminG Data Flow DiaGram to usE

CasE DiaGram”

Shinde Ajaykumar D.
*

Dr. M.S. Prasad
**

Abstract:
In this paper we present an approach that transforms the DFD to the Use Case diagram of UML.

DFD is a structured approach which provides the functional view of the system whereas Use

Case diagram is an object oriented approach provides the functional view of the system under

consideration. Structured methods are very commonly used by the developers and if there is need

to expand the functionality of the systems then object oriented approach is used which is very

useful. So the transformation of one approach to the other will be beneficial for the developers.

For this we present an approach that will transform Data Flow Diagrams (Major tool of

Structured Approach) with Use case diagram.

Key Words: DFD (Data Flow Diagram), Object Oriented Approach, Structured Approach,

UML (Unified Modeling Language), UCD (Use Case Diagram)

*
 Dept. of Computer Studies, CSIBER, Kolhapur, Research Student

**
 Professor, Bharati Vidyapeeth’s Institute Of Management And Entrepreneurship

Development, Erandavane, Pune

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

562

January
2014

1. Introduction

Many organizations are using the software that was designed and developed at least a decade

ago. The approach used to design and develop these systems was procedure oriented and the

same approach was reflected in documents [18]. The procedure oriented approach has become

outdated and the focus is shifting to object oriented. As replacing the existing software puts extra

burden on the users in terms of cost. Many customers are continuing with existing software. It is

possible to implement changes in the code so as to shift software from procedure oriented to

object oriented, but this will create a new problem document and code can not match. The only

feasible solution for up-gradation and maintenance is to preserve system design and incorporate

it with latest software development strategies [7]. It is possible to generate design using reverse

engineering with the help of available code. But if frequent changes are made to code it becomes

inconsistent with the design. The user also feels the original system is irreplaceable and

trustworthy [9].

 In procedure oriented approach DFD is treated as main artifact for system representation.

A DFD is must for each and every system designed using procedure oriented approach. The main

advantage in using DFD is it shows dynamic approach of the system [9]. Procedure oriented is

being replaced by object oriented approach and is becoming the only approach for design and

development. Many organizations are shifting from procedure oriented to object oriented

approach [11]. . For design of object-oriented systems and creation of model, Unified Modeling

Language[17] has now become the industry standard [2][3]. UML is a collection of diagrams

used to represent different aspects of the system under consideration. UML allows us to

represent static structure of the system as well as dynamic behavior of the system.

In [12] Liu and Wilde, have proposed type base and global base object finder methodologies for

identifying object from non-object-oriented languages. In [8] Jacobson and Lindstrom, discuss

reverse engineering strategies for object-oriented model to incorporate changes. Newcombe and

Kotik [13] present a tool for abstract object-oriented model generation. Subramanian and Bwirne

[15] generate objects from FORTRAN code. They discuss constraints like private, virtual, and

pure virtual. Cimitile and others [4] and De Lucia and others [5] present approaches that revolve

around data stores. Authors propose approaches that consider functions and subroutines,

interacting with tables, data-store and use them as objects methods. De Lucia and others in [6]

propose an approach to recover class diagram from system code that is highly data intensive.

From the above discussion it is clear that all the techniques are dependent on code. In our

approach, we are more interested in procedure oriented design than code. In design, we have

observed that in literature, both structured design to non-UML design and structured design to

UML design transformations exist.

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

563

January
2014

2. Data flow diagram and Use case diagram

a) Notations used in Data Flow Diagram

The notations for DFD were proposed and popularized by Yourdon, DeMarco, and others are

described below:

b) Use Case Diagram

The Use case diagram is drawn to identify the primary elements and processes that form the

system. Primary elements are termed as "actors" and the processes are called "use cases", Use

case diagram shows which actors interact with each use case.

A use case diagram captures the functional aspects of a system. More specifically, it captures the

business processes carried out in the system. As we discuss the functionality and processes of the

system, we discover significant characteristics of the system that we model in the use case

diagram. Due to the simplicity of use case diagrams, and more importantly, because they are

shorn of all technical jargon, use case diagrams are a great tool for user meetings. Use case

diagrams have another important use. Use case diagrams define the requirements of the system

being modeled and hence are used to write test scripts for the modeled system.

A use case diagram is quite simple in nature and depicts two types of elements: one representing

the business roles and the other representing the business processes. Let us take a closer look at

use at what elements constitutes a use case diagram.

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

564

January
2014

3. Representation of DFD in Framewrok

 All transformation processes are dependent on representation of DFD. In order to

simplify the transformation process we have designed and used a framework [14]. A data flow

diagram uses very limited number of symbols and may be represented as a set of symbol sets. In

the framework the DFD is represented as a graph using atomic relational grammar [1]. In the

framework [14] DFD is defined as

DFD = {{SS}, {PS}, {DS}, {TS}, {RS}, {PR}} where,

 DS represents set of data flows

 PS represents set of processes that may be either atomic or aggregate

 TS represent set of data stores

 SS represent set of source consumers

 RS represents the set of relationships

 PR represents the set of productions

The framework treats DFD as directed graph in which the sets {SS}, {PS}, {TS} are the vertices

and the set {DS} is the set of edges. {RS} is a set of relationships between the atomic elements

of DFD and {PR} is set of productions derived from elements of {RS}. A member of the set

{SS} will be a start symbol [14].

a) Transformation of DFD to Use Case Diagram

 For transformation of DFD to use case diagram strategy is defined in this paper. Every

transformation strategy should be based on concrete rules [10][16]. The transformation strategy

presented in this paper is also based on rules. As all diagrams in procedure oriented and object

oriented design are represented as graphs. We have designed a strategy that is based on patterns,

as patterns strategy deals with graphs and representation of graph is based on concrete or abstract

syntax of source or target model language [16]. The transformation strategy adopted in this paper

constructs a intermediate model using tagged language [14]. Transformation rules are framed

and applied to entire model rather than a specific location in the model. Application of the

transformation rule generates a new model; same set of rules is applied iteratively to all matching

locations in the source model. The transformation rules are applied in phases where each phase

has a specific purpose and it invokes a definite rule of transformation. The transformation rules

are organized according to the source language and target language i.e. DFD and use case

diagram. The rule application strategy used here is unidirectional [16] i.e. transformation rule are

used to transform source model to the target model reverse is not possible.

The transformation strategy adopted in this paper is Hybrid; it is a mixture of direct

manipulation, relational approach and graph transformation approach [16]. In direct

manipulation approach API and internal model representation is provided. In relational approach

the type of the element is specified using relational constraints. This approach also has relational

specification and mapping rule. In graph transformation approach LHS and RHS sides are used.

The LHS pattern is matched in the model being transformed and replaced by the RHS pattern. As

these properties are incorporated in the framework, it becomes hybrid strategy for transformation

[16].

The transformation strategy designed in this paper starts with the scanning of existing

model/graph. The scheme adopted for transformation is model-to-model mapping of symbols.

Table 2 : symbols used to draw use case diagram

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

565

January
2014

This approach offers an internal model representation plus some API to manipulate it. Since the

diagram is represented internally as distinct sets of symbols in the framework, each symbol set is

scanned separately. Framework goes on scanning each and every element from DFD and

identifies its type. The scanning process identifies attributes of the elements and is very essential

process for mapping the symbols from DFD to use case diagram.

As the first step of transformation, the framework starts scanning source consumer set(SS

set). For each source and consumer in the data flow diagram a new actor is added to the actor set

in use case diagram. The source consumer in DFD and actors in use case diagrams represent the

external users of the system. The attributes of source and consumer from DFD are recorded as

attributes of actors in use case diagram. After completion of scanning of the source and

consumer set the frameworks starts scanning the process set.

In the second step of transformation, process set(PS set) is taken. For each process in

process set of DFD framework adds a new use case in the use case set of use case diagram.

While scanning the process set the framework looks for the expansion attribute of the process in

DFD. If the expansion attribute of process is true, it implies that the process is expanded in the

next level of the DFD, i.e. the process expanded is made up of many other sub processes. For

each level of the DFD the scan process is applied iteratively to the next level of the DFD. The

framework opens the expanded DFD and starts scanning it. For each process in DFD a new use

case is added to the use case diagram. In case of expanded processes the framework maintains a

relationship between expanded and processes in new DFD as generalization. The generalization

relationship is used to show relationship between more general and more concrete use case. The

generalization relationship may be named as extends or uses depending upon, whether it adds

something new to existing use case or it is integral part of existing use case.

In the third step of transformation, framework starts scanning relationships set(RS set).

Relationship set has start and end attributes. If the relationship is either starting or ending on the

data store the relationship is not recorded in relationship set of the use case diagram. This is

because use case diagrams do not have data stores concept. For all the other relationships it goes

on adding a new relation in the relation set in the use case diagram. The fourth step of scan starts

on the data store set(TS set) of DFD. As data stores are not part of the use case diagrams this

entire set is skipped. In the last step framework scans data flows; data flow coming into the data

stores and the data flows that are coming out of the data stores(DS set) are omitted from the use

case set. All the other data flows are stored as links in the use case set.

b) Algorithm for Transformation of DFD to Use Case

We have proposed an algorithm for transformation of DFD to use case diagram. It starts

by reading the symbol set from DFD. It looks at the shapes and other characteristics of symbol to

identify its type i.e. rectangle is source consumer of information, circle is process, arrow is a data

flow with start and end characteristics, parallel lines represent data stores. This information is

used for mapping the symbols from DFD to use case diagram.

Algorithm DFDtoUCD

Input : DFD subsets {SS}, {PS}, {DS}, {TS},

{RS}

Output : use case set

//start reading the DFD from first symbol set to

 //if circle in DFD is expanded

in next level

Else

 Get next level DFD

 Call algorithm recursively

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

566

January
2014

last symbol set

If symbol set is empty

 return

else

For each symbol in DFD set

// if the symbol from DFD set is rectangle then

add stickman symbol to use case set

If symbol.type = source consumer then

 Add actor symbol to use case

set.

 //if symbol from DFD is circle then add

oval to use case set

Else if symbol.type = process then

 // if circle in DFD is not

expanded in next level

If process.expanded = false then

 Add use case to use case set

//If the symbol from DFD is arrow

 Else if symbol.type = dataflow then

 //do not record links with datastore

 If dataflow.source !=

datastore or data store.destination != data

store

 Then

 Record link to use case set

 //do not record links with datatore

 Else if relation.start != data store or

relation.end != data store then

 Record relationship to the use

case set

 //do not consider the datastore

symbol for conversion

Else if symbol.type = data store then

 Skip the symbol

Get next symbol

Endif

Algorithm-1: Algorithm to transform DFD to Usecase diagram.

The algorithm starts reading the DFD. As the DFD is represented using sets, it starts

reading these sets one by one. It reads the terminal symbol sets first. After reading the symbols

from terminal set, it identifies the type of the symbol. Once the type is known, it finds out the

mapping symbol from use case set and adds it to the use case. The mapping set is given in Table-

3. For the data store symbol there is no equivalent symbol. All data store symbols and the links

associated with data store symbol are skipped by the algorithm. The mapping process obtains the

basic symbols required for drawing the use case diagram. The framework accepts these symbols

and by looking at the link set goes on drawing the final use case diagram. The mapping symbol

set used by the algorithm for transformation of DFD to use case diagram is given in Table 3.

While mapping the symbols from DFD to use case the framework makes it sure that the symbol

is not duplicated. This helps us in reducing the number of diagram elements and removing

redundancy of element in the translated diagram.

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

567

January
2014

The mapping of the symbol is done by looking at the purpose of each symbol e.g. the process

symbol in DFD use used to show the functionality performed by the system similarly the use

case symbol in use case diagram is used to show functionality in the use case diagram. As the

purpose of both the symbols is same the process symbol from DFD is mapped to use case

symbol in use case diagram. The source and consumer of data in DFD plays the role of the user.

Actor in the use case diagram is user of the system. The source consumer symbol is mapped to

actor symbol in use case diagram. A data flow is a link between two elements in the DFD. The

data flow in DFD is mapped to a link between the elements of the use case diagram. As use case

diagram has no concept of data store all the data stores and their associated links are dropped

from the use case set.

4. Examples for transformation of DFD to use case diagram

The framework [14] provides a toolbox to draw a data flow diagram. The elements from

toolbox have to be selected by the users and paste on the drawing area. While connecting the

symbol a line must start within the boundaries of the element and also must end in the

boundaries of the element. The drawing procedure validates the connection between atomic

elements of the diagram. i.e. if we try to connect sources and consumers to each other, error

message is displayed and connection is rejected. All validations are based on the relationship

between elements using ARG [1]. When the drawing is over the diagram is saved using a tagged

language as shown in section 4(a).

a) Representation of DFD in Framework

The DFD is represented in the framework using tagged language. In this section we

present tagged language generated by the framework for the Figure 1. The DFD is represented as

multiset of symbols with attributes the symbol sets are written separately. A set of relationship is

additional set written as a result of drawing it includes the binary relationships between the

symbols in DFD.

Consider DFD drawn in Figure 1, it is represented in the framework as follows. Internal

representation of DFD in figure 1 is given below it. It uses a tagged language for representation

of DFD.

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

568

January
2014

<DFD>

 <Source-Consumer>

 <%rectangle id=0 nm=" Student ", x=93 ,

y=62 , w=181 , h=30 %>

 <%rectangle id=1 nm=" Examiner ",

x=746 , y=73 , w=166 , h=24 %>

 <%rectangle id=2 nm=" Exam Section ",

x=389 , y=579 , w=168 , h=35 %>

 </Source-Consumer>

 <Relationship>

 <%relation start=Student, end=Register

Student %>

 <%relation start=Assign Exam No,

end=Student %>

 <%relation start=Student, end=Conduct

Exam. %>

 <%relation start=Examiner, end=Evaluate

%>

 <%relation start=Register Student,

end=Student %>

 <%relation start=Assign Exam No,

end=Student %>

 <%relation start=Student, end=Assign

Exam No %>

 <%relation start=Exam Section,

end=Assign Exam No %>

 <%relation start=Exam Section,

end=Conduct Exam. %>

 <%relation start=Conduct Exam.,

end=Attendance %>

 <%relation start=Conduct Exam.,

end=Answer Sheet %>

<%Joiner x1=206 , y1=82 , x2=169 ,

y2=267 , nm="Application form" , x=101 , y=164

%>

<%Joiner x1=404 , y1=292 , x2=219 , y2=82 ,

nm="Hall Ticket" , x=252 , y=194 %>

<%Joiner x1=249 , y1=80 , x2=671 , y2=305 ,

nm="Attend" , x=455 , y=188 %>

<%Joiner x1=862 , y1=89 , x2=926 , y2=306 ,

nm="Subject Knowledge" , x=879 , y=144 %>

<%Joiner x1=153 , y1=384 , x2=222 , y2=532 ,

nm="Student Data" , x=203 , y=470 %>

 <%Joiner x1=369 , y1=366 , x2=251 ,

y2=535 , nm=" " , x=0 , y=0 %>

<%Joiner x1=286 , y1=539 , x2=385 , y2=391 ,

nm="Student Data" , x=339 , y=475 %>

<%Joiner x1=514 , y1=593 , x2=447 , y2=402 ,

nm="Rules" , x=473 , y=462 %>

<%Joiner x1=514 , y1=593 , x2=651 , y2=402 ,

nm="Papers & answer sheets" , x=542 , y=464 %>

<%Joiner x1=710 , y1=429 , x2=684 , y2=544 ,

nm="Record" , x=697 , y=505 %>

<%Joiner x1=735 , y1=408 , x2=887 , y2=586 ,

nm="Written Answer Sheets" , x=773 , y=553 %>

 <%Joiner x1=935 , y1=589 , x2=922 ,

y2=418 , nm=" " , x=0 , y=0 %>

<%Joiner x1=900 , y1=333 , x2=645 , y2=173 ,

nm="Student Marks" , x=748 , y=238 %>

 </Line>

 < DataBase>

 <%Database nm="Marks", x1=577 , y1=164

, x2=696 , y2=164 %>

Figure 1 Level 1 DFD for Examination System

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

569

January
2014

 <%relation start=Answer Sheet,

end=Evaluate %>

 <%relation start=Evaluate, end=Marks %>

 .</Relationship>

 <Process>

 <%oval id=0 nm="Register Student",

x=95 , y=262 , w=148 , h=138 %>

 <%oval id=1 nm="Assign Exam No",

x=329 , y=263 , w=242 , h=156 %>

 <%oval id=2 nm="Conduct Exam.",

x=636 , y=285 , w=135 , h=166 %>

 <%oval id=3 nm="Evaluate", x=861 ,

y=296 , w=113 , h=137 %>

 </Process>

 <Line>

 <%Database nm="Student", x1=155 ,

y1=529 , x2=310 , y2=529 %>

 <%Database nm="Attendance", x1=597 ,

y1=540 , x2=706 , y2=540 %>

<%Database nm="Answer Sheet", x1=840 ,

y1=584 , x2=941 , y2=584 %>

 </DataBase>

 <ID relationship>

 <% sid=0 eid=0 %>

 <% sid=0 eid=1 %>

 <% sid=0 eid=2 %>

 <% sid=1 eid=3 %>

 <% sid=2 eid=1 %>

 <% sid=2 eid=2 %>

 </ID relationship>

</DFD>

The representation of DFD in the framework uses multi-sets of symbols. The tagged language

records these sets separately using a definite format. The sets include set for source and

consumers, set for processes, set for data stores, set for data flows and the data flow set is used to

generate another set called relation set. The output of drawing of data flow is shown with the

tagged language. Figure 2 shows conversion of level 1 DFD shown in figure 1. The conversion

of DFD to use case diagram uses the algorithm described in section 3(b).

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

570

January
2014

Figure 3 shows the expansion of process 3 from level 1 DFD. The expansion of a process in

framework is done by selecting a process and clicking on ‘Go’ button in tool box.

b) Representation of Level2 DFD in Framework

Representation of level-2 DFD shown in figure 3 in the framework
<DFD>

 <Source-Consumer>

 <%rectangle id=0 nm=" Exam Section ",

x=274 , y=431 , w=186 , h=51 %>

 </Source-Consumer>

 <Relationship>

 <%relation start=Exam Section, end=Start

Exam %>

 <%relation start=Exam Section,

end=Record Attendance %>

 <%relation start=Start Exam, end=Record

Attendance %>

 <%relation start=Start Exam, end=Record

Attendance %>

 <%relation start=Record Attendance,

end=Attendance %>

 <%relation start=Record Attendance,

end=End Exam %>

 <%relation start=Record Attendance,

end=End Exam %>

 <%relation start=End Exam, end=Answer

Sheets %>

 .</Relationship>

 <Process>

 <%oval id=0 nm="Start Exam", x=181 ,

y=68 , w=144 , h=129 %>

 <%oval id=1 nm="Record Attendance",

x=509 , y=97 , w=165 , h=141 %>

 <Line>

<%Joiner x1=290 , y1=439 , x2=249 ,

y2=182 , nm="Papers & answer Sheets" ,

x=129 , y=287 %>

<%Joiner x1=434 , y1=446 , x2=570 ,

y2=222 , nm="Rules" , x=515 , y=322 %>

 <%Joiner x1=293 , y1=138 , x2=516 ,

y2=152 , nm=" " , x=0 , y=0 %>

 <%Joiner x1=531 , y1=192 , x2=425 ,

y2=310 , nm=" " , x=0 , y=0 %>

<%Joiner x1=642 , y1=174 , x2=822 ,

y2=169 , nm="Time" , x=721 , y=167 %>

<%Joiner x1=881 , y1=208 , x2=907 ,

y2=345 , nm="Return Answer Sheets" ,

x=895 , y=295 %>

 </Line>

 < DataBase>

 <%Database nm="Attendance", x1=350 ,

y1=306 , x2=490 , y2=306 %>

<%Database nm="Answer Sheets", x1=845 ,

y1=341 , x2=979 , y2=342 %>

 </DataBase>

 <ID relationship>

 <% sid=0 eid=0 %>

 <% sid=0 eid=1 %>

 <% sid=-1 eid=1 %>

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

571

January
2014

 <%oval id=2 nm="End Exam", x=814 ,

y=100 , w=155 , h=145 %>

 </Process>

 <% sid=-1 eid=2 %>

 </ID relationship>

</DFD>

Figure 4 is transformation of level2 DFD shown in figure 3. The procedure for transformation is

same as that of level1 DFD to use case diagram.

Figure 5 shows the relationship between process in level-1DFD and its expansion in level 2

DFD. The process in level 1 and its sub-processes are in relations. The only relationship possible

between these processes is generalization. Figure 5 shows this relationship between a process

and its sub-process using use case notations.

Conclusion

As software industry is shifting from procedure oriented paradigm to object oriented. It is

becoming essential to find out commonalities and differences between these two approaches. An

attempt has to be made to establish connection between these approaches. The approach

suggested in this paper is an attempt to establish connection between these approaches. The

transformation strategy presented in this paper allows the user to draw DFD also it understands

syntax and semantics of DFD. The main advantage of this framework is it stores diagram using

tagged language which is easy to read and understand. On the other hand because storage is done

in textual format is saves disk space. The transformation algorithm presented in this paper

converts DFD to correct Use case diagram. The framework also understands relationship

between leveled DFD’s and this information is used to establish generalize relationship between

use cases.

Figure 5 Relationship between Process3 and it’s Expansion

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

572

January
2014

References :

[1]. Antti-Pekka Tuovinen Object-Oriented Engineering of Visual Languages, PhD Thesis,

Series of Publications A, Report A-2002-, Helsinki, February 2002, 185.

[2]. Booch, G., Jacobson, Rumbaugh, J. I. (2005). Unified Modeling Language User Guide.

(2nd Edition), Addison Wesley, Upper Saddle River, NJ.

[3]. Booch, G., Rumbaugh, J., Jacobson, I. (1999). The Unified Modeling Language User

Guide. Addison Wesley.

[4]. Cimitile, A., De Lucia, A., Di Lucca, G.A., Fasolino, A.R. (1997). Identifying objects in

legacy systems. In: Proceeding Of 5th International Workshop on Program

Comprehension, Dearborn, Michigan, IEEE CS Press, pp. 138-147.

[5]. De Lucia, G.A., Di Lucca, G.A., Fasolino, A.R., Guerra, P., Petruzzelli, S. (1997).

Migrating Legacy Systems towards Object-Oriented Platforms. In: 13th International

Conference on Software Maintenance ICSM'97.

[6]. De Lucia, G.A., Fasolino, A.R., Carlini, U. D. (2000). Recovering Class Diagrams from

Data-Intensive Legacy Systems. In: 16th IEEE International Conference on Software

Maintenance ICSM'00.

[7]. Dietrich, W., Nackman, I., Gracer, L. (1989), Saving a legacy with objects. In Proceedings

of OOPSLA, pp. 77-88.

[8]. Jacobson, I., Lindstrom, F. (1991). Re-engineering of old systems to an object-oriented

architecture. In: Proceedings of OOPSLA, pp. 340-350.

[9]. Kendall, K. E., Kendall J. E. (1999). System Analysis and Design. (3rd Edition), Prentice

Hall.

[10]. Krzysztof Czarnecki and Simon Helsen, A classification of model transformation

approaches OOPSLA’ 03 Workshop on Generative Techniques in the Context of Model-

Driven Architecture.

[11]. Larman, C. (2004). Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design. (3rd Edition), Addison Wesley Professional.

[12]. Liu S., Wilde, N. (1990). Identifying objects in a conventional procedural language: an

example of data design recovery. In: Proceedings of Conference on Software

Maintenance, San Diego, CA, IEEE CS Press, pp. 266-271.

[13]. Newcombe, P. and Kotik, G. (1995). Reengineering procedural into object-oriented

systems. In: Proceeding of 2nd Working Conference on Reverse Engineering, Toronto,

Canada, IEEE CS Press, pp. 237-249.

[14]. Shinde Ajaykumar and Dr. M.S. Prasad Automic Relational Grammer(ARG) as a means

for Representing Data Flow Diagram International Journal of Information Systems, ISSN

2229-5429, Vol. III Issue II, December 2012.

[15]. Subramaniam, G.V. and Bwirne, E. J. (1996). Deriving an object model from legacy

FORTRAN code. In: Proceeding of International Conference on Software Maintenance,

Monterey, CA, IEEE CS Press, pp. 3-12.

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

573

January
2014

[16]. Thu Nga Tram, Khaled M. Khan, Yi-Chen Lan, A Framework for Transforming Artifacts

From Data Flow Diagram to UML, Technical Report No. CIT/04/2004. IASTED

International Conference on Software Engineering Innsbruck, Austria.

[17]. UML (Unified Modeling Language): Superstructure. Version 2.1.2. Object Management

Group (OMG). Document 07-11-02.pdf From http://www.omg.org/spec/UML/2.1.2/

[Accessed: March 1, 2008].

[18]. Yourdon, E. (1989). Modern Procedure oriented Analysis. Yourdon Press. Upper Saddle

River, NJ.

